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ABSTRACT

Ensuring product quality and reliability is essential in the dynamic environment of industrial
manufacturing. Detecting defects during production is critical to prevent the delivery of faulty products to
customers. Traditional quality control methods, while effective in certain cases, often lack the efficiency,
precision, and adaptability required for modern high-speed manufacturing. Manual inspection, in
particular, is prone to errors and reduced accuracy. Recent advancements in Deep Learning (DL) and
Computer Vision (CV) offer promising opportunities for automated defect detection, with the potential to
transform quality control processes. This study focuses on implementing a VGG19-based Convolutional
Neural Network (CNN) for automatic quality assessment of paper bags using image processing, replacing
manual inspection methods. The proposed system was trained and tested on a dataset of 1,729 images,
classified into “OK” and “NOT OK” categories based on defect presence. The model achieved an accuracy
of 95.26%, significantly outperforming skilled human inspectors, whose accuracy typically ranges from 72—
80%. These results demonstrate the effectiveness of DL and CV in enhancing manufacturing quality control
by delivering higher accuracy and consistency than traditional manual inspection.

Keywords: Convolutional Neural Networks (CNN), defective product detection, deep learning (DL),
industrial quality inspection, image-based defect detection, paper bag manufacturing, quality control
automation

INTRODUCTION
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Quality control remains a cornerstone of
manufacturing, ensuring that products meet
stringent reliability and performance standards.
Traditional quality control methods— primarily
manual inspections and basic automated
systems—are often time-consuming, prone to
human error, and insufficient for detecting subtle
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expectations. This step is critical in the production
process, as it directly impacts both product
performance and customer satisfaction.

While traditional quality control methods such as
human visual inspections and rudimentary
computerized systems have historically played an
important role in maintaining standards, they
frequently prove inadequate in modern, complex
manufacturing environments. The diversity of
products and the intricacies of defect types
necessitate more advanced detection systems.
Screening and removal of defective items is
essential for most manufacturing organisations,
with specialist inspectors comparing multiple
product attributes to manufacturer specifications.
However, such processes are labour-intensive,
subjective, and often struggle to detect subtle or
intricate flaws, highlighting the need for more
sophisticated, dependable alternatives.

Producing defect-free products requires more
than manufacturing excellence; effective defect
management must be implemented throughout
the entire production lifecycle. The Defect
Management Technique (DMT) involves five
sequential stages: discovery, analysis,
prioritisation, removal, and verification. As
shown in Figure 1, DMT begins with identifying a
defect, using methods such as alpha or beta
testing. Once a defect is detected, it is analysed to
determine its nature and cause, prioritised
according to severity and potential impact, and
then removed wusing appropriate corrective
measures. The final stage involves verifying that
the defect has been successfully resolved, a task
undertaken by technical experts or end-users.

Removal
Several mathods are used

o remove defect parts.
type of defect

Q) OJO\O

Discovery Prioritization Verification
Verify the succ essful
removal of defected part

Analyze to find out the

To discover the defect Prioritized based on level

of severity

Figure 1 Roadmap for DMT

These DMT procedures should be integrated into
every phase of product development to improve
system quality and reduce problems during
implementation. Advanced defect management
enhances detection tools and ensures timely, cost-
effective product delivery.

Although conventional defect detection methods
have strengths, they are often limited in scope. For
example, osmosis testing is well-suited for
identifying defects in highly permeable or
impermeable materials, yet still relies on human
intervention, requires device calibration, and
incurs high equipment costs (Habib et al., 2020).
Such limitations restrict adaptability and
manufacturing accuracy.

In recent years, innovative defect detection
approaches — particularly Computer Vision (CV)
and Deep Learning (DL) techniques —have gained
prominence as key technologies for automating
quality inspection. These methods offer greater
adaptability, reduced human involvement, and
improved cost efficiency, while also enabling
learning from new data and handling complex
defect patterns (Zheng et al., 2021; Zhou et al,,
2023). DL, a subset of machine learning, uses
multi-layered neural networks to learn from large
datasets, enabling highly accurate defect detection
and classification (Dong et al., 2021). CV enables
machines to process and interpret visual
information, facilitating defect identification,
localisation, and classification in manufactured
products using images or videos (Szeliski, 2022).

Integrating DL and CV into industrial
applications has advanced automated defect
detection  capabilities, overcoming many
limitations of traditional methods. These
technologies have achieved notable success in
diverse applications such as object detection,
intelligent robotics (Khan et al., 2020), acoustic
event detection for smart city safety (Ciaburro,
2020; Ciaburro and Iannace, 2020), and UAV blade
failure diagnostics (Costa et al, 2020). By
combining low-level feature extraction with high-
level feature representation, DL models—
especially Convolutional Neural Networks
(CNNs)—can significantly —enhance defect
detection accuracy.
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This study investigates the application of a
VGG19-based CNN architecture for real-world
industrial defect detection in the manufacturing of
paper bags. The case study focuses on a Swedish
manufacturer producing high-quality paper bags
for diverse applications, including packaging dry
goods, waste, and animal feed. Customers
demand products that preserve their contents in
optimal condition (Tabernik et al., 2023). The
proposed approach aims to replace manual
inspection with a fully automated image-based
quality control system, thereby increasing
detection accuracy, reducing labour costs, and
ensuring consistent product quality.

LITERATURE REVIEW

Tabernik et al. (2023) developed SegDecNet++, a
novel deep learning (DL) architecture designed
for concrete crack detection that combines pixel-
wise segmentation with image-level classification
for comprehensive analysis. In the steel industry,
DL models have demonstrated strong
performance in identifying surface defects and
irregularities  that compromise  structural
integrity. Li et al. (2024) proposed a DL model for
steel surface defect detection incorporating a
Multiscale Feature Extraction (MSFE) subsystem,
which employs varied convolutional kernel
parameters to improve feature extraction across
multiple scales. Similarly, Demir et al. (2023)
introduced PAR-CNN, an approach combining
identical residual block learning with attention
mechanisms to enhance the classification of steel
surface defects.

Computer Vision (CV) techniques have also been
widely applied in wood manufacturing for
detecting defects such as knots and splits, which
affect both visual quality and structural stability.
Lim et al. (2023) proposed a compact and efficient
CNN model capable of near real-time wood defect
detection, optimised for embedded systems. Cui
et al. (2024) developed CCG-YOLOv7, an
improved YOLOv7-based model incorporating
features such as Center Efficient Layer
Aggregation Networks (C-ELAN) and Cascade
Center of Gravity Batch Normalisation (CCG-BN)
to enhance small-target detection in wood
flooring.
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Zhu et al. (2019) explored defect detection in
emulsion pump manufacturing using an
improved CNN to replace manual inspection. A
key challenge in their work was the limited
availability of defective product images, which
made acquiring high-quality sample images
critical. The authors applied slant correction as a
pre-processing step to enhance image quality.
Their CNN achieved 97% accuracy with an
average detection time of 0.18 seconds on unseen
images. In the textile industry, Jing et al. (2019)
developed a CNN-based system to detect six
common fabric defects using a dataset comprising
various colours and repeating patterns. By
automatically estimating patch sizes, their system
improved defect visibility and achieved an
average accuracy of 97%.

In pharmaceutical manufacturing, Racki et al.
(2022) proposed a CNN-based surface defect
detection method for solid oral dosage forms,
employing ReLU activation and batch
normalisation after each convolutional layer to
improve training efficiency and model stability.
Ouyang et al. (2019) suggested a CNN-based
fabric defect detection approach with a
customised activation layer optimised for fine
texture segmentation, utilising batch
normalisation to increase model stability and
operational efficiency.

Several studies have also explored transfer
learning (TL) for industrial defect detection. Yang
et al. (2020) applied an optimised VGG model
with TL to inspect laser welding, pre-training the
model on a large-scale image dataset. He et al.
(2020) used CNN for pixel-level defect detection
on item surfaces, while Yun et al. (2020) proposed
a convolutional variational autoencoder for multi-
class metal surface defect recognition. Sassi et al.
(2019) employed TL for welding defect detection,
achieving competitive results on a small dataset.
Oborski and Wysocki (2022) implemented a
CNN-based visual quality control system within a
holonic shop-floor environment for casting
inspection. Lee et al. (2021) utilised a VGGI16-
based model for welded nut defect detection,
experimenting with various CNN architectures
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before achieving optimal performance with
VGGIe.

RESEARCH METHODOLOGY

Jonsac’s e-commerce paper bag product range
varies frequently, serving customers with diverse
requirements in terms of quantity, delivery
intervals, colours, and customised prints for each
bag section. Variations in bag structure, such as
size, are common, while market dynamics —such
as gaining new customers, losing existing ones, or
adapting to changing preferences—further
complicate quality control. These factors make it
impractical to collect complete datasets for every
product variation when training a deep learning
(DL) model. Although sufficient images were
available for the current product lines, the
proposed VGG19-based Convolutional Neural
Network (CNN) requires updated training with
new image data whenever a new product variant
is introduced.

A specific challenge arises when distinguishing
between visually similar variants—for example,
when a defect such as a colour or print anomaly in
Variant X is visually identical to the intended
design of Variant Y. In this study, the focus is on
bag dimensions, which are largely identical across
variants except for length. Many existing DL-
based quality control systems overlook defects
related to colour, print, and other aesthetic
attributes; however, in this work, these factors are
considered alongside geometric consistency. The
dataset consists of 1,729 images across six product
variants, with differentiation based on print,
colour, and length. Structurally, all variants share
identical geometry and folding lines except for
two variants.

Based on these considerations, the study
concentrates on inspecting only the bottom
section of the bag, as this is the critical area for
detecting most structural defects. The bottom
section images were used for training the
automated defect detection model. Images were
manually classified into two categories: “OK” (no
defect) and “NOT OK” (defective), with the latter

representing deviations from the customer-
approved geometry.

Figure 2 A instance of the defect product
image from defect image database

The manual classification process involved
experienced human inspectors, who determined
defect categories based on visual assessment. The
proposed CNN model was trained to not only
classify defective images but also identify the
specific defect region and its cause. Five distinct
defect categories were defined:

1. Crushed side

2. Offset bottom

3. Tearing

4. Right-side skewed

5. Left-side skewed

Training using VGG19 based CNN

The Adam optimiser was used for training, with a
batch size of 256, momentum set to 0.9, and an
input pixel value range of 0-255. The L2 weight
regularisation penalty was set to 5x10—-45 \ times
107{-4}. Hyperparameters were tuned in Python
using the Keras framework to reduce overfitting.
A dropout rate of 0.5 was applied to the first and
second fully connected (FC) layers. The learning
rate was initially set at 0.01, and reduced by a
factor of 10 when validation accuracy plateaued,
leading to convergence after 49 epochs.

To address potential gradient instability in deep
networks, weights were initialised using a
random normal distribution (mean = 0, variance =
0.01) with zero bias. The VGGI19 architecture
consists of five convolutional blocks followed by
max-pooling layers, and three FC layers. The
input consists of RGB images resized to
224x224224 \ times 224 pixels, with preprocessing
involving mean RGB subtraction from each pixel.
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Max-pooling was applied using a 2x22
\times 2 window with a stride of 2, and spatial
padding of one pixel. The first two FC layers each
contained 4,096 channels (1x1x40961 \times 1
\times 4096), while the final FC layer contained
1,000 channels for ImageNet classification,
followed by a softmax output layer. Although the
architecture is pre-trained, its layers were fine-
tuned for this specific defect detection task to
improve adaptability and performance.
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Figure 3 VGG19 architecture with CNN model
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RESULT AND DISCUSSION

The experimental setup employed a VGGI19-
based Convolutional Neural Network (CNN)
consisting of 16 convolutional layers, five max-
pooling layers, and three fully connected layers
for feature extraction and classification. The
dataset of 1,729 images was split into 80% for
training (1,383 images) and 20% for testing (346
images). The training set contained an equal
proportion of “OK” and “NOT OK” samples,
allowing the model to learn defect detection with
balanced class representation.

Once trained, the model was evaluated on
previously unseen data. The VGG19-based CNN
demonstrated a strong ability to correctly classify
both defective and non-defective samples.
Annotations were automatically generated during
classification, allowing for iterative refinement of
the training dataset. This process improved model
robustness by eliminating excessive or incorrect
annotations and ensuring better fit to the paper
bag product specifications.

The confusion matrix (Figure 4) summarises
classification performance:

e True Positives (TP): Correctly identified
defective bags

e True Negatives (TN): Correctly identified
non-defective bags

¢ False Positives (FP): Incorrectly identified
bags as defective

e False Negatives (FN): Incorrectly
identified defective bags as non-defective

While occasional duplicate annotations were
generated, these did not adversely affect the
inspection process, as the defect verification steps
remained consistent. Missed annotations (false
negatives) were rare, and in such cases, the
affected samples were still classified as “OK,”
reducing the risk of defective products being
approved.
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CNN with VGG19 Classifier Confusion Matrix
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Figure 4 confusion matrix of CNN with VGG19
in predicting defect in paper bag product

Figure 5 Defect identified by CNN with
VGG19 from approved of existing technique

Figure 5 illustrates the successful identification of
defects by the CNN model compared to products
verified through human inspection. This
comparison demonstrates the model’s capacity to
detect subtle anomalies that may be overlooked
by human inspectors, such as slight geometric
deviations or minor skewing.

Classifi | Accu | Reca | Preci | Sens | Spec
cation racy 1 sion | itivit | ificit
Metho y y

d

CNN 95.26 | 95.78 | 95.14 | 0.958 | 0.947
with

VGG19

CNN 94.51 | 94.88 | 94.56 | 0.949 | 0.941
with

VGG16

CNN 93.00 | 93.69 | 92.97 | 0.937 | 0.922

Table 1 Performance metrics of CNN with
VGG19 and other existing CNN techniques

Table 1 compares the performance metrics of the
proposed VGG19-based CNN against other CNN
variants. The proposed model achieved the
highest accuracy (95.26%), with recall, precision,
sensitivity, and specificity also outperforming the
CNN with VGG16 and a baseline CNN model

Accuracy performance for various CNN based
classification method
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o
w
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Classification Method

Figure 6 comparison of accuracy performance
for various CNN based classification method

Figure 6 presents the accuracy comparison,
confirming that the VGGI19-based CNN
outperformed the CNN with VGG16 (94.51%) and
the baseline CNN (93.00%). The results indicate
that VGG19's deeper architecture and fine-tuned
parameters contribute to improved defect
detection capability.

The high classification accuracy (95.26%)
highlights the model’s effectiveness in
distinguishing between “OK” and “NOT OK”
paper bags. This level of performance surpasses
that of experienced human inspectors, whose
accuracy typically ranges between 72-80% in
similar industrial inspection settings. The
superior performance of the VGG19-based CNN
can be attributed to:

1. Enhanced feature extraction from deeper
convolutional layers.

2. Balanced dataset training, ensuring
robustness across defect types.

3. Automated annotation refinement,
reducing noise in training data.
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These findings align with prior research
indicating that deep learning methods, when
properly trained and fine-tuned, can outperform
manual inspection in accuracy, speed, and
consistency

CONCLUSION

This study investigated the application of deep
learning (DL) and image processing for
automated quality inspection in paper bag
manufacturing, replacing the existing manual
inspection process. Using a VGGI19-based
Convolutional Neural Network (CNN), the
proposed system achieved an accuracy of 95.26%,
significantly =~ surpassing the accuracy of
experienced human inspectors, typically ranging
from 72-80%.

The findings demonstrate that DL and Computer
Vision (CV) technologies can effectively detect
subtle and complex defects that are often
overlooked in manual inspection. By focusing on
the bottom section of the bag—where most
structural defects occur—the system efficiently
identified defects across five main categories:
crushed side, offset bottom, tearing, right-side
skewed, and left-side skewed.

The superior performance of the VGG19-based
CNN can be attributed to its deep architecture,
optimised hyperparameters, and balanced dataset
training, which collectively enhanced feature
extraction  and classification ~ accuracy.
Additionally, the automated annotation
refinement process reduced training noise and
improved model robustness.

From an industrial perspective, implementing
such a DL-based automated inspection system
offers multiple advantages:

e Higher detection accuracy compared to
human inspection.

¢ Consistency and reliability in defect
identification, reducing variability due to
human judgment.
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e Increased inspection speed to match
modern high-throughput manufacturing
lines.

e Scalability to adapt to new product
variants with minimal reconfiguration.

Overall, this research confirms that VGG19-based
CNN architectures have significant potential to
enhance quality control in manufacturing,
particularly in applications requiring precision,
speed, and adaptability. Future work could
explore transfer learning approaches, integration
with real-time production systems, and multi-
modal defect detection combining visual and
sensor-based inputs.
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