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ABSTRACT
 

Ensuring product quality and reliability is essential in the dynamic environment of industrial 

manufacturing. Detecting defects during production is critical to prevent the delivery of faulty products to 

customers. Traditional quality control methods, while effective in certain cases, often lack the efficiency, 

precision, and adaptability required for modern high-speed manufacturing. Manual inspection, in 

particular, is prone to errors and reduced accuracy. Recent advancements in Deep Learning (DL) and 

Computer Vision (CV) offer promising opportunities for automated defect detection, with the potential to 

transform quality control processes. This study focuses on implementing a VGG19-based Convolutional 

Neural Network (CNN) for automatic quality assessment of paper bags using image processing, replacing 

manual inspection methods. The proposed system was trained and tested on a dataset of 1,729 images, 

classified into “OK” and “NOT OK” categories based on defect presence. The model achieved an accuracy 

of 95.26%, significantly outperforming skilled human inspectors, whose accuracy typically ranges from 72–

80%. These results demonstrate the effectiveness of DL and CV in enhancing manufacturing quality control 

by delivering higher accuracy and consistency than traditional manual inspection. 
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INTRODUCTION 

Quality control remains a cornerstone of 
manufacturing, ensuring that products meet 
stringent reliability and performance standards. 
Traditional quality control methods—primarily 
manual inspections and basic automated 
systems—are often time-consuming, prone to 
human error, and insufficient for detecting subtle 
or complex defects (Alkhudary et al., 2020). 
Quality control in manufacturing encompasses 
procedures that guarantee products meet defined 
quality specifications and satisfy customer 
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expectations. This step is critical in the production 
process, as it directly impacts both product 
performance and customer satisfaction. 

While traditional quality control methods such as 
human visual inspections and rudimentary 
computerized systems have historically played an 
important role in maintaining standards, they 
frequently prove inadequate in modern, complex 
manufacturing environments. The diversity of 
products and the intricacies of defect types 
necessitate more advanced detection systems. 
Screening and removal of defective items is 
essential for most manufacturing organisations, 
with specialist inspectors comparing multiple 
product attributes to manufacturer specifications. 
However, such processes are labour-intensive, 
subjective, and often struggle to detect subtle or 
intricate flaws, highlighting the need for more 
sophisticated, dependable alternatives. 

Producing defect-free products requires more 
than manufacturing excellence; effective defect 
management must be implemented throughout 
the entire production lifecycle. The Defect 
Management Technique (DMT) involves five 
sequential stages: discovery, analysis, 
prioritisation, removal, and verification. As 
shown in Figure 1, DMT begins with identifying a 
defect, using methods such as alpha or beta 
testing. Once a defect is detected, it is analysed to 
determine its nature and cause, prioritised 
according to severity and potential impact, and 
then removed using appropriate corrective 
measures. The final stage involves verifying that 
the defect has been successfully resolved, a task 
undertaken by technical experts or end-users. 

 

 

Figure 1 Roadmap for DMT 

 

These DMT procedures should be integrated into 
every phase of product development to improve 
system quality and reduce problems during 
implementation. Advanced defect management 
enhances detection tools and ensures timely, cost-
effective product delivery. 

Although conventional defect detection methods 
have strengths, they are often limited in scope. For 
example, osmosis testing is well-suited for 
identifying defects in highly permeable or 
impermeable materials, yet still relies on human 
intervention, requires device calibration, and 
incurs high equipment costs (Habib et al., 2020). 
Such limitations restrict adaptability and 
manufacturing accuracy. 

In recent years, innovative defect detection 
approaches—particularly Computer Vision (CV) 
and Deep Learning (DL) techniques—have gained 
prominence as key technologies for automating 
quality inspection. These methods offer greater 
adaptability, reduced human involvement, and 
improved cost efficiency, while also enabling 
learning from new data and handling complex 
defect patterns (Zheng et al., 2021; Zhou et al., 
2023). DL, a subset of machine learning, uses 
multi-layered neural networks to learn from large 
datasets, enabling highly accurate defect detection 
and classification (Dong et al., 2021). CV enables 
machines to process and interpret visual 
information, facilitating defect identification, 
localisation, and classification in manufactured 
products using images or videos (Szeliski, 2022). 

Integrating DL and CV into industrial 
applications has advanced automated defect 
detection capabilities, overcoming many 
limitations of traditional methods. These 
technologies have achieved notable success in 
diverse applications such as object detection, 
intelligent robotics (Khan et al., 2020), acoustic 
event detection for smart city safety (Ciaburro, 
2020; Ciaburro and Iannace, 2020), and UAV blade 
failure diagnostics (Costa et al., 2020). By 
combining low-level feature extraction with high-
level feature representation, DL models—
especially Convolutional Neural Networks 
(CNNs)—can significantly enhance defect 
detection accuracy. 
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This study investigates the application of a 
VGG19-based CNN architecture for real-world 
industrial defect detection in the manufacturing of 
paper bags. The case study focuses on a Swedish 
manufacturer producing high-quality paper bags 
for diverse applications, including packaging dry 
goods, waste, and animal feed. Customers 
demand products that preserve their contents in 
optimal condition (Tabernik et al., 2023). The 
proposed approach aims to replace manual 
inspection with a fully automated image-based 
quality control system, thereby increasing 
detection accuracy, reducing labour costs, and 
ensuring consistent product quality. 

LITERATURE REVIEW 

Tabernik et al. (2023) developed SegDecNet++, a 
novel deep learning (DL) architecture designed 
for concrete crack detection that combines pixel-
wise segmentation with image-level classification 
for comprehensive analysis. In the steel industry, 
DL models have demonstrated strong 
performance in identifying surface defects and 
irregularities that compromise structural 
integrity. Li et al. (2024) proposed a DL model for 
steel surface defect detection incorporating a 
Multiscale Feature Extraction (MSFE) subsystem, 
which employs varied convolutional kernel 
parameters to improve feature extraction across 
multiple scales. Similarly, Demir et al. (2023) 
introduced PAR-CNN, an approach combining 
identical residual block learning with attention 
mechanisms to enhance the classification of steel 
surface defects. 

Computer Vision (CV) techniques have also been 
widely applied in wood manufacturing for 
detecting defects such as knots and splits, which 
affect both visual quality and structural stability. 
Lim et al. (2023) proposed a compact and efficient 
CNN model capable of near real-time wood defect 
detection, optimised for embedded systems. Cui 
et al. (2024) developed CCG-YOLOv7, an 
improved YOLOv7-based model incorporating 
features such as Center Efficient Layer 
Aggregation Networks (C-ELAN) and Cascade 
Center of Gravity Batch Normalisation (CCG-BN) 
to enhance small-target detection in wood 
flooring. 

Zhu et al. (2019) explored defect detection in 
emulsion pump manufacturing using an 
improved CNN to replace manual inspection. A 
key challenge in their work was the limited 
availability of defective product images, which 
made acquiring high-quality sample images 
critical. The authors applied slant correction as a 
pre-processing step to enhance image quality. 
Their CNN achieved 97% accuracy with an 
average detection time of 0.18 seconds on unseen 
images. In the textile industry, Jing et al. (2019) 
developed a CNN-based system to detect six 
common fabric defects using a dataset comprising 
various colours and repeating patterns. By 
automatically estimating patch sizes, their system 
improved defect visibility and achieved an 
average accuracy of 97%. 

In pharmaceutical manufacturing, Rački et al. 
(2022) proposed a CNN-based surface defect 
detection method for solid oral dosage forms, 
employing ReLU activation and batch 
normalisation after each convolutional layer to 
improve training efficiency and model stability. 
Ouyang et al. (2019) suggested a CNN-based 
fabric defect detection approach with a 
customised activation layer optimised for fine 
texture segmentation, utilising batch 
normalisation to increase model stability and 
operational efficiency. 

Several studies have also explored transfer 

learning (TL) for industrial defect detection. Yang 

et al. (2020) applied an optimised VGG model 

with TL to inspect laser welding, pre-training the 

model on a large-scale image dataset. He et al. 

(2020) used CNN for pixel-level defect detection 

on item surfaces, while Yun et al. (2020) proposed 

a convolutional variational autoencoder for multi-

class metal surface defect recognition. Sassi et al. 

(2019) employed TL for welding defect detection, 

achieving competitive results on a small dataset. 

Oborski and Wysocki (2022) implemented a 

CNN-based visual quality control system within a 

holonic shop-floor environment for casting 

inspection. Lee et al. (2021) utilised a VGG16-

based model for welded nut defect detection, 

experimenting with various CNN architectures 
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before achieving optimal performance with 

VGG16. 

 

RESEARCH METHODOLOGY 

Jonsac’s e-commerce paper bag product range 
varies frequently, serving customers with diverse 
requirements in terms of quantity, delivery 
intervals, colours, and customised prints for each 
bag section. Variations in bag structure, such as 
size, are common, while market dynamics—such 
as gaining new customers, losing existing ones, or 
adapting to changing preferences—further 
complicate quality control. These factors make it 
impractical to collect complete datasets for every 
product variation when training a deep learning 
(DL) model. Although sufficient images were 
available for the current product lines, the 
proposed VGG19-based Convolutional Neural 
Network (CNN) requires updated training with 
new image data whenever a new product variant 
is introduced. 

A specific challenge arises when distinguishing 
between visually similar variants—for example, 
when a defect such as a colour or print anomaly in 
Variant X is visually identical to the intended 
design of Variant Y. In this study, the focus is on 
bag dimensions, which are largely identical across 
variants except for length. Many existing DL-
based quality control systems overlook defects 
related to colour, print, and other aesthetic 
attributes; however, in this work, these factors are 
considered alongside geometric consistency. The 
dataset consists of 1,729 images across six product 
variants, with differentiation based on print, 
colour, and length. Structurally, all variants share 
identical geometry and folding lines except for 
two variants. 

Based on these considerations, the study 

concentrates on inspecting only the bottom 

section of the bag, as this is the critical area for 

detecting most structural defects. The bottom 

section images were used for training the 

automated defect detection model. Images were 

manually classified into two categories: “OK” (no 

defect) and “NOT OK” (defective), with the latter 

representing deviations from the customer-

approved geometry.  

 

Figure 2 A instance of the defect product 
image from defect image database 

The manual classification process involved 
experienced human inspectors, who determined 
defect categories based on visual assessment. The 
proposed CNN model was trained to not only 
classify defective images but also identify the 
specific defect region and its cause. Five distinct 
defect categories were defined: 

1. Crushed side 
2. Offset bottom 
3. Tearing 
4. Right-side skewed 
5. Left-side skewed 

Training using VGG19 based CNN 

The Adam optimiser was used for training, with a 
batch size of 256, momentum set to 0.9, and an 
input pixel value range of 0–255. The L2 weight 
regularisation penalty was set to 5×10−45 \times 
10^{-4}. Hyperparameters were tuned in Python 
using the Keras framework to reduce overfitting. 
A dropout rate of 0.5 was applied to the first and 
second fully connected (FC) layers. The learning 
rate was initially set at 0.01, and reduced by a 
factor of 10 when validation accuracy plateaued, 
leading to convergence after 49 epochs. 

To address potential gradient instability in deep 
networks, weights were initialised using a 
random normal distribution (mean = 0, variance = 
0.01) with zero bias. The VGG19 architecture 
consists of five convolutional blocks followed by 
max-pooling layers, and three FC layers. The 
input consists of RGB images resized to 
224×224224 \times 224 pixels, with preprocessing 
involving mean RGB subtraction from each pixel. 
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Max-pooling was applied using a 2×22 

\times 2 window with a stride of 2, and spatial 

padding of one pixel. The first two FC layers each 

contained 4,096 channels (1×1×40961 \times 1 

\times 4096), while the final FC layer contained 

1,000 channels for ImageNet classification, 

followed by a softmax output layer. Although the 

architecture is pre-trained, its layers were fine-

tuned for this specific defect detection task to 

improve adaptability and performance.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3 VGG19 architecture with CNN model 

RESULT AND DISCUSSION 

The experimental setup employed a VGG19-
based Convolutional Neural Network (CNN) 
consisting of 16 convolutional layers, five max-
pooling layers, and three fully connected layers 
for feature extraction and classification. The 
dataset of 1,729 images was split into 80% for 
training (1,383 images) and 20% for testing (346 
images). The training set contained an equal 
proportion of “OK” and “NOT OK” samples, 
allowing the model to learn defect detection with 
balanced class representation. 

Once trained, the model was evaluated on 
previously unseen data. The VGG19-based CNN 
demonstrated a strong ability to correctly classify 
both defective and non-defective samples. 
Annotations were automatically generated during 
classification, allowing for iterative refinement of 
the training dataset. This process improved model 
robustness by eliminating excessive or incorrect 
annotations and ensuring better fit to the paper 
bag product specifications. 

The confusion matrix (Figure 4) summarises 
classification performance: 

 True Positives (TP): Correctly identified 
defective bags 

 True Negatives (TN): Correctly identified 
non-defective bags 

 False Positives (FP): Incorrectly identified 
bags as defective 

 False Negatives (FN): Incorrectly 
identified defective bags as non-defective 

While occasional duplicate annotations were 
generated, these did not adversely affect the 
inspection process, as the defect verification steps 
remained consistent. Missed annotations (false 
negatives) were rare, and in such cases, the 
affected samples were still classified as “OK,” 
reducing the risk of defective products being 
approved. 
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Figure 4 confusion matrix of CNN with VGG19 
in predicting defect in paper bag product 

 

Figure 5 Defect identified by CNN with 

VGG19 from approved of existing technique 

Figure 5 illustrates the successful identification of 
defects by the CNN model compared to products 
verified through human inspection. This 
comparison demonstrates the model’s capacity to 
detect subtle anomalies that may be overlooked 
by human inspectors, such as slight geometric 
deviations or minor skewing. 

Classifi
cation 
Metho
d 

Accu
racy 

Reca
ll 

Preci
sion 

Sens
itivit

y 

Spec
ificit

y 

CNN 
with 
VGG19 

95.26 95.78 95.14 0.958 0.947 

CNN 
with 
VGG16 

94.51 94.88 94.56 0.949 0.941 

CNN 93.00 93.69 92.97 0.937 0.922 

 

Table 1 Performance metrics of CNN with 

VGG19 and other existing CNN techniques 

Table 1 compares the performance metrics of the 

proposed VGG19-based CNN against other CNN 

variants. The proposed model achieved the 

highest accuracy (95.26%), with recall, precision, 

sensitivity, and specificity also outperforming the 

CNN with VGG16 and a baseline CNN model 

 

Figure 6 comparison of accuracy performance 
for various CNN based classification method 

 

Figure 6 presents the accuracy comparison, 
confirming that the VGG19-based CNN 
outperformed the CNN with VGG16 (94.51%) and 
the baseline CNN (93.00%). The results indicate 
that VGG19’s deeper architecture and fine-tuned 
parameters contribute to improved defect 
detection capability. 

The high classification accuracy (95.26%) 
highlights the model’s effectiveness in 
distinguishing between “OK” and “NOT OK” 
paper bags. This level of performance surpasses 
that of experienced human inspectors, whose 
accuracy typically ranges between 72–80% in 
similar industrial inspection settings. The 
superior performance of the VGG19-based CNN 
can be attributed to: 

1. Enhanced feature extraction from deeper 
convolutional layers. 

2. Balanced dataset training, ensuring 
robustness across defect types. 

3. Automated annotation refinement, 
reducing noise in training data. 
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These findings align with prior research 

indicating that deep learning methods, when 

properly trained and fine-tuned, can outperform 

manual inspection in accuracy, speed, and 

consistency 

 

CONCLUSION 

This study investigated the application of deep 
learning (DL) and image processing for 
automated quality inspection in paper bag 
manufacturing, replacing the existing manual 
inspection process. Using a VGG19-based 
Convolutional Neural Network (CNN), the 
proposed system achieved an accuracy of 95.26%, 
significantly surpassing the accuracy of 
experienced human inspectors, typically ranging 
from 72–80%. 

The findings demonstrate that DL and Computer 
Vision (CV) technologies can effectively detect 
subtle and complex defects that are often 
overlooked in manual inspection. By focusing on 
the bottom section of the bag—where most 
structural defects occur—the system efficiently 
identified defects across five main categories: 
crushed side, offset bottom, tearing, right-side 
skewed, and left-side skewed. 

The superior performance of the VGG19-based 
CNN can be attributed to its deep architecture, 
optimised hyperparameters, and balanced dataset 
training, which collectively enhanced feature 
extraction and classification accuracy. 
Additionally, the automated annotation 
refinement process reduced training noise and 
improved model robustness. 

From an industrial perspective, implementing 
such a DL-based automated inspection system 
offers multiple advantages: 

 Higher detection accuracy compared to 
human inspection. 

 Consistency and reliability in defect 
identification, reducing variability due to 
human judgment. 

 Increased inspection speed to match 
modern high-throughput manufacturing 
lines. 

 Scalability to adapt to new product 
variants with minimal reconfiguration. 

Overall, this research confirms that VGG19-based 
CNN architectures have significant potential to 
enhance quality control in manufacturing, 
particularly in applications requiring precision, 
speed, and adaptability. Future work could 
explore transfer learning approaches, integration 
with real-time production systems, and multi-
modal defect detection combining visual and 
sensor-based inputs. 
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